Performance Evaluations of κ-Approximate Modal Haplotype Type Algorithms for Clustering Categorical Data
نویسندگان
چکیده
منابع مشابه
Clustering Ensembles for Categorical Data
Cluster ensembles offer a solution to challenges inherent to clustering arising from its ill-posed nature. In this paper we focus on the design of ensembles for categorical data. Our approach leverages diverse input clusterings discovered in random subspaces. We experimentally demostrate the efficacy of our technique in combination with the categorical clustering algorithm COOLCAT.
متن کاملData Reduction Method for Categorical Data Clustering
Categorical data clustering constitutes an important part of data mining; its relevance has recently drawn attention from several researchers. As a step in data mining, however, clustering encounters the problem of large amount of data to be processed. This article offers a solution for categorical clustering algorithms when working with high volumes of data by means of a method that summarizes...
متن کاملClustering Large Categorical Data Set via Genetic Algorithms
Riassunto: Illustriamo due estensioni − proposte da Huang (1998) e da Kauffman e Rousseew (1990) − del noto algoritmo di raggruppamento a centri mobili al caso in cui si considerino variabili qualitative. Proponiamo una nuova metodologia di raggruppamento basata sulla logica degli algoritmi genetici. L’applicazione di tali algoritmi ad un data set reale e l’analisi dei risultati ottenuti eviden...
متن کاملA Comparative Study of Some Clustering Algorithms on Shape Data
Recently, some statistical studies have been done using the shape data. One of these studies is clustering shape data, which is the main topic of this paper. We are going to study some clustering algorithms on shape data and then introduce the best algorithm based on accuracy, speed, and scalability criteria. In addition, we propose a method for representing the shape data that facilitates and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Journal of Information Technology
سال: 2015
ISSN: 1815-7432
DOI: 10.3923/rjit.2015.112.120